Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

WARNING: 本文可能不适合人类阅读, 因为有着一堆跳步以及个人记号.

这篇文章来自于我对moduli space 的一些初步了解. 主要抄了 Birkar 的 Topics in Algebraic Geometry 以及Harvard 的MATH259 的notes.

何谓moduli space? Fine moduli space M\mathcal{M} 即是对moduli functor FF 的一个representative. 说人话就是对于任意 scheme TT over base SS, 我们有 F(T)M(T)F(T)\cong \mathcal{M}(T), 这里M(T)\mathcal{M}(T)TT-points of M\mathcal{M}. 我们同时可以考虑M(M)\mathcal{M}(\mathcal{M}) 中的idMid_{\mathcal{M}} 以及其所对应的F(M)F(\mathcal{M}) 中的元素U\mathfrak{U}, 这个U\mathfrak{U} 叫做universal family. 取出这个U\mathfrak{U} 有什么好处呢? 如果我们考虑F(T)F(T) 中的另一个元素V\mathfrak{V}, 通过一个类似Yoneda lemma 的讨论, 可以证明V\mathfrak{V}U\mathfrak{U} 的一个通过M(T)\mathcal{M}(T) 中的某一个点的pullback, 即这些元素和fibre 能够做出一个对应.

本文中讨论的Hilbert scheme 以及 Quot scheme 就是最为简单的fine moduli space 的例子, 这部分工作被记录与Grothendieck 的FGA. 同样也可以想一想如果把global section functor 作为一个moduli functor, 那么它是否存在fine moduli space 呢? 如果存在, 这个space 是什么以及上面的universal family 又是什么呢?

Ans: AS1\mathbb{A}_{S}^{1} and xOS[x]x\in \mathcal{O}_{S}[x].

Hilbert and Quot functors

In this section, we will give definitions of Hilb\mathcal{H}ilb and Quot\mathcal{Q}uot functors, which are the basis of the most moduli functors. We will consider those noetherian schemes over some noetherian scheme YY.

Definition 1. For XX projective scheme over kk, L\mathcal{L} is an invertible sheaf on XX, F\mathcal{F} is coherent sheaf on XX. Then the function Φ(l)=χ(X,FLl)\Phi(l)=\chi(X,\mathcal{F}\otimes \mathcal{L}^{\otimes l}) is a polynomial in Q[t]\mathbb{Q}[t]. We call this polynomial Hilbert polynomial respect to L\mathcal{L} of F\mathcal{F}. (If using OX\mathcal{O}_{X} as the coherent sheaf, we’ll call it the Hilbert polynomial of XX.)

Let NSch/Y\mathrm{NSch}/Y denote the category of noetherian schemes over YY, we now give the definition of Hilbert functor.

Definition 2. Let f:XYf:X\to Y be a projective morphism of noetherian schemes, L\mathcal{L} be an invertible sheaf on XX. Let ΦQ[t]\Phi\in \mathbb{Q}[t] be a polynomial. Define the Hilbert functor HilbX/YΦ,L:(NSch/Y)opSet\mathcal{H}ilb_{X /Y}^{\Phi,\mathcal{L}}: (\mathrm{NSch} /Y)^{op}\to \mathrm{Set} by HilbX/YΦ,L(S)={closed subschemes Z of XS(=X×YS) flat over S s.t. for each sS,Φs=Φ}{H}ilb_{X /Y}^{\Phi,\mathcal{L}}(S)=\{\text{closed subschemes } Z \text{ of }X_{S}(=X\times_{Y}S) \text{ flat over } S \text{ s.t. for each }s\in S, \Phi_{s}=\Phi\}. Here Φs\Phi_{s} it the Hilbert polynomial of fibre ZsZ_{s} with respect to Ls\mathcal{L}_{s}(pullback of L\mathcal{L} along Zs{s}SZ_{s}\to \{s\}\to S).

To make this definition more concrete, we need a lemma:

Lemma 1. Let f:XYf:X\to Y be a projective morphism of noetherian schemes. Let F\mathcal{F} be a coherent sheaf on XX. If F\mathcal{F} is flat over YY, then the Hilbert polynomial Φy\Phi_{y} of Fy\mathcal{F}_{y} on XyX_{y} viewed as a function in yy is locally constant on YY. If YY is integral, then the converse also holds.

Proof

Proof. Ha3 III theorem 9.9. ◻

This lemma implies the functor HilbX/YΦ,L{H}ilb_{X /Y}^{\Phi,\mathcal{L}} is well-defined since the fibre has the same Hilbert polynomial. We also give a generalization of Hilbert functor:

Definition 3. Let f:XYf:X\to Y be a projective morphism of noetherian schemes and L\mathcal{L} an invertible sheaf on XX, F\mathcal{F} coherent sheaf on XX. Let ΦQ[t]\Phi\in \mathbb{Q}[t] be a polynomial. Then the Quot functor QuotF/X/YΦ,L:(NSch/Y)opSet\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}:(\mathrm{NSch}/Y)^{op}\to \mathrm{Set} by QuotF/X/YΦ,L(S)={coherent quotients G of FS(pullback of F to XS) flat over S with Φs=Φ}\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(S)=\{\text{coherent quotients } \mathcal{G} \text{ of } \mathcal{F}_{S} (\text{pullback of }\mathcal{F} \text{ to }X_{S}) \text{ flat over } S \text{ with } \Phi_{s} = \Phi\}. Here Φs\Phi_{s} is the Hilbert polynomial of the sheaf Gs\mathcal{G}_{s} on the fibre XsX_{s} of XSSX_{S}\to S over sSs\in S with respect to L\mathcal{L}.

The Hilbert functor is the special case of Quot functor when F=OX\mathcal{F}=\mathcal{O}_{X}(consider the coherent ideal sheaves and their quotients). Now for any morphism v:TSv:T\to S over YY, the functor structure of QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} is given by pulling back elements in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(S) via vv. To check the Hilbert polynomial is the same, we can use the following lemma:

Lemma 2. Let f:XYf:X\to Y be a projective morphism of noetherian schemes, L\mathcal{L} an invertible sheaf on XX, F\mathcal{F} a coherent sheaf on XX and FG\mathcal{F}\to \mathcal{G} a coherent quotient such that G\mathcal{G} is flat over YY with Hilbert polynomial Φ\Phi with respect to L\mathcal{L} . Let g:SYg:S\to Y be a morphism from a noetherian scheme. Then FSGS\mathcal{F}_{S}\to \mathcal{G}_{S} is a coherent quotient with GS\mathcal{G}_{S} flat over SS with the Hilbert polynomial Φ\Phi.

Proof

Proof. Only need to show the assertion for Hilbert polynomial. Let g(s)=yg(s)=y be some point in YY and the corresponding fibres be XS,sX_{S,s} and XyX_{y}. The bottom arrow pullback square

XS;sXySpec(k(s))Spec(k(y))

is from the field extension k(y)k(s)k(y)\to k(s) and thus a flat morphism. By the flat base change, Hi(Xy,Fy)k(s)=Hi(XS,s,Fs)H^{i}(X_{y},\mathcal{F}_{y})\otimes k(s)=H^{i}(X_{S,s},\mathcal{F}_{s}), so dimk(y)Hi(Xy,Fy)=dimk(s)Hi(XS,s,Fs)\dim_{k(y)}H^{i}(X_{y},\mathcal{F}_{y})=\dim_{k(s)}H^{i}(X_{S,s},\mathcal{F}_{s}). So χ(Xy,Fy)=χ(XS,s,Fs)\chi(X_{y},\mathcal{F}_{y})=\chi(X_{S,s},\mathcal{F}_{s}) and the Hilbert polynomial is the same by the same arguments. ◻

Definition 4. We say the functor QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} is representable if we have the following:

  • a scheme QuotF/X/YΦ,LQuot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} in NSch/Y\mathrm{NSch} /Y called the Quot scheme.

  • a coherent sheaf GQuotF/X/YΦ,L(QuotF/X/YΦ,L)\mathfrak{G}\in \mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(Quot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}) on X×YQuotF/X/YΦ,LX\times_{Y}Quot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} called the universal family.

  • the fundamental isomorphism HomSch/Y(S,QuotF/X/YΦ,L)QuotF/X/YΦ,L(S)\mathrm{Hom}_{\mathrm{Sch}/Y}(S,Quot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}})\xrightarrow{\simeq}\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(S) which sends a morphism SQuotF/X/YΦ,LS\to Quot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} to the pullback of G\mathfrak{G} via the induced morphism XSX×YQuotF/X/YΦ,LX_{S}\to X\times_{Y} Quot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}.

When F=OX\mathcal{F}=\mathcal{O}_{X}, we denote the QuotF/X/YΦ,LQuot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} by HilbX/YΦ,LHilb_{X /Y}^{\Phi,\mathcal{L}} and call it the Hilbert scheme of XX over YY respect to L\mathcal{L}.

Example 1. Let f:XYf:X\to Y be a projective morphism of noetherian schemes, L=OX(1)\mathcal{L}=\mathcal{O}_{X}(1), Φ=1\Phi=1. Then the closed subschemes of fibre of ff with Hilbert polynomial Φ\Phi are those closed points(Just note that degΦ=dimSuppOXy\deg \Phi=\dim \mathrm{Supp}\mathcal{O}_{X_{y}}). We guess: HilbX/YΦ,L=XHilb_{X /Y}^{\Phi,\mathcal{L}}=X and the universal family is the sheaf associated to the diagonal subscheme Δ\Delta of X×YXX\times_{Y} X. Now we check it. If SNSch/YS\in \mathrm{NSch}/ Y and ZXSZ\subset X_{S} a closed subscheme flat over SS with fibres having Hilbert polynomial Φ\Phi, then ZSZ\to S is an isomorphism(consider those fibres). So we have the morphism SXS\to X and SΔS\to \Delta as desired.

The Grassmannian

We start with an example

Example 2. Let kk be an algebraically closed field, VV an nn-dimensional vector space, d0d\geq 0. The Grassmannian Grass(V,d)Grass(V,d) is the space which parametrized the (nd)(n-d)-dimensional subspace of VV. Let WW be a dd-dimensional kk vector space. Then any subspace VV' of VV of dimension ndn-d is kernel of some ϕ:VW\phi:V\to W, and the matrix represented MϕM_{\phi} representing ϕ\phi(up to an isomorphism of WW). The set of all d×nd\times n matrices over kk is parametrized by the affine space Adn\mathbb{A}^{dn} and the subset of rank dd form an open set UAdnU\subset \mathbb{A}^{dn}. So Grass(V,d)Grass(V,d) is the quotient of UU by GL(k,d)GL(k,d).

The Grassmannian can be described as follows: For any point in Grass(V,d)Grass(V,d), which is represented by a matrix MM, with entries mijm_{ij} and columns γ1,,γn\gamma_{1},\dots, \gamma_{n}. Let MIM_{I} be the d×dd\times d submatrix of MM with index set I{1,,n}I\subset \{1,\dots, n\}. After choosing appropriate representitives, we may assume MIM_{I} is the identity matrix, and then the other entries not in MIM_{I} are uniquely determined. So all points MM of Grass(V,d)Grass(V,d) with MI0M_{I}\neq 0 simply correspond to the points of Adnd2\mathbb{A}^{dn-d^{2}}. Let GIG_{I} be the set of such points. For I,JI, J two index sets of columns, we let GI,JG_{I,J} be the set of those points MGIM\in G_{I} with detMJ0\det M_{J}\neq 0. Define a morphism fI,J:GI,JGJ,If_{I,J}:G_{I,J}\to G_{J,I} by mapping MM to MJ1MM_{J}^{-1}M. If I,J,KI,J,K are three index sets of columns, then fI,J=fJ,KfI,Jf_{I,J}=f_{J,K}\circ f_{I,J}. fI,I=idf_{I,I}=id so fI,Jf_{I,J} are all isomorphisms. We can give Grass(V,d)Grass(V,d) a scheme structure by gluing GIG_{I} via fI,Jf_{I,J}.

We will need the existence of Grassmannian.

Theorem 1. Let YY be noetherian scheme and E\mathcal{E} a locally free sheaf of rank nn. Then there exists a unique (up to isomorphism) scheme Grass(E,d)Grass(\mathcal{E},d) with a closed immersion into P(dE)\mathbb{P}(\wedge^{d}\mathcal{E}) and the induced morphism π:Grass(E,d)Y\pi: Grass(\mathcal{E},d)\to Y and a rank dd locally free quotient sheaf πEG\pi^{*}\mathcal{E}\to \mathfrak{G} satisfying: for any morhism g:SYg:S\to Y and any rank dd locally free quotient gEGg^{*}\mathcal{E}\to \mathcal{G}, there’s a unique morphism h:SGrass(E,d)h:S\to Grass(\mathcal{E},d) over YY s.t. gEGg^{*}\mathcal{E}\to \mathcal{G} is the pullback of πEG\pi^{*}\mathcal{E}\to \mathfrak{G}.

Proof

Proof. Omitted. See G&W2 theorem 8.17. ◻

Corollary 1. Let X=YX=Y be noetherian scheme and f:XYf:X\to Y the identity morphism,L=OX\mathcal{L}=\mathcal{O}_{X}, F\mathcal{F} locally free sheaf of rank nn, Φ=d\Phi=d. Then QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} is represented by Grass(F,d)Grass(\mathcal{F},d).

Proof

Proof. Let g:SYg:S\to Y be a morphism from a noetherian scheme. The fibre Xs=Speck(s)X_{s}=\mathrm{Spec} k(s), and Fs\mathcal{F}_{s} is an nn-dimensional vector space. For GQuotF/X/YΦ,L(S)\mathcal{G}\in \mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(S), consider Gs\mathcal{G}_{s} on the fibre XsX_{s}, Φs=d\Phi_{s}=d so Gs\mathcal{G}_{s} is a dd-dimensional quotient of Fs\mathcal{F}_{s}. G\mathcal{G} is flat so it’s locally free of rank dd. By above theorem, the surjection FSG\mathcal{F}_{S}\to\mathcal{G} uniquely determines a morphism h:SGrass(F,d)h:S\to Grass(\mathcal{F},d) and πFG\pi^{*}\mathcal{F}\to \mathfrak{G} pulls back to gFGg^{*}\mathcal{F}\to \mathcal{G}. ◻

Castelnuovo-Mumford regularity

We start with a useful lemma:

Lemma 3. Let X=ProjA[t0,,tn]X=\mathrm{Proj} A[t_{0},\dots,t_{n}], hA[t0,,tn]h\in A[t_{0},\dots, t_{n}] a homogeneous polynomial, and HH the closed subscheme defined by hh, F\mathcal{F} a coherent sheaf on XX. If HH does not contain any of the associated points of F\mathcal{F}, then the sequence 0FO(H)FOXFOH00\to \mathcal{F}\otimes \mathcal{O}(-H)\to \mathcal{F}\otimes\mathcal{O}_{X}\to \mathcal{F}\otimes\mathcal{O}_{H}\to 0 is exact.

Proof

Proof. First the finiteness of associated points is by 05AF1. The problem is local so we reduce to the affine case. The sequence 0OX(H)hOXOH00\to \mathcal{O}_{X}(-H)\xrightarrow{\cdot h}\mathcal{O}_{X}\to \mathcal{O}_{H}\to 0 is exact. Since HH does not contain any associated points of F\mathcal{F}, hh is not a zero divisor in H0(X,F)H^{0}(X,\mathcal{F}) (c.f. 00LD1). So F(1)hF\mathcal{F}(-1)\xrightarrow{\cdot h}\mathcal{F} is injective. We have the desired exact sequence 0F(1)hFFH00\to \mathcal{F}(-1)\xrightarrow{\cdot h}\mathcal{F}\to\mathcal{F}_{H}\to 0. ◻

Note that Tor1(OX,F)=0\mathrm{Tor}_{1}(\mathcal{O}_{X},\mathcal{F})=0 since OX\mathcal{O}_{X} is flat, the exactness of the above sequence is equivalent to Tor1(OX,F)Tor1(OH,F)\mathrm{Tor}_{1}(\mathcal{O}_{X},\mathcal{F})\to \mathrm{Tor}_{1}(\mathcal{O}_{H},\mathcal{F}) is surjective. So we have Tor1(OH,F)=0\mathrm{Tor}_{1}(\mathcal{O}_{H},\mathcal{F})=0.

Definition 5. Let XX be a projective scheme over a field kk, let F\mathcal{F} be a coherent sheaf on XX. The sheaf F\mathcal{F} is said to be mm-regular if Hp(X,F(mp))=0H^{p}(X,\mathcal{F}(m-p))=0 for any p>0p>0 (with the respect to a very ample sheaf OX(1)\mathcal{O}_{X}(1)).

We give two useful theorems. They will be used in the proof of the main theorem.

Theorem 2. Let XX be a projective scheme over a field kk. Let F\mathcal{F} be a coherent sheaf on XX which is mm-regular. Then we have the following properties:

  1. F\mathcal{F} is ll-regular for any lml\geq m.

  2. the natural map H0(X,OX(1))H0(X,F(l))H0(X,F(l+1))H^{0}(X,\mathcal{O}_{X}(1))\otimes H^{0}(X,\mathcal{F}(l))\to H^{0}(X,\mathcal{F}(l+1)) is surjective for any lml\geq m.

  3. F(l)\mathcal{F}(l) is generated by global sections for any lml\geq m.

Proof

Proof. We first reduce to the case X=PknX=\mathbb{P}_{k}^{n}. Let i:XPkni:X\to \mathbb{P}_{k}^{n} be the closed immersion. Note that Hi(X,F(l))=Hi(Pkn,iF(l))H^{i}(X,\mathcal{F}(l))=H^{i}(\mathbb{P}_{k}^{n},i_{*}\mathcal{F}(l)) for any ii. Also (iF)y={0if yi(x) for any xFxif y=i(x) for some x(i_{*}\mathcal{F})_{y}=\left\{\begin{aligned} &0& \text{if } y\neq i(x) \text{ for any }x\\ &\mathcal{F}_{x} &\text{if }y=i(x) \text{ for some }x \end{aligned}\right.. So iF(l)i_{*}\mathcal{F}(l) is generated by global sections if and only if F(l)\mathcal{F}(l) is generated by global sections.

Now we assume X=PknX=\mathbb{P}_{k}^{n}. Using the cohomology base change we may assume kk is infinite field. We use the induction on nn. The associated points of F\mathcal{F} forms a finite subset, so there’s a hyperplane HH which does not contain any associated point of F\mathcal{F}. Consider the exact sequence 0F(mi1)F(mi)OH00\to \mathcal{F}(m-i-1)\to \mathcal{F}(m-i)\to \mathcal{O}_{H}\to 0. Taking long exact sequence we get

Hi(X,F(mi))Hi(X,FH(mi))Hi+1(X,F(mi1))\cdots\to H^{i}(X,\mathcal{F}(m-i))\to H^{i}(X,\mathcal{F}_{H}(m-i))\to H^{i+1}(X,\mathcal{F}(m-i-1))\to \cdots

so FH\mathcal{F}_{H} is also mm-regular. Since HPkn1H\cong \mathbb{P}_{k}^{n-1}, by inductive hypothesis, the assertions also holds for FH\mathcal{F}_{H}.

For 1, we can use induction on ll. From the exact sequence Hi(X,F(l1))Hi(X,F(l))Hi(X,FH(l))H^{i}(X,\mathcal{F}(l-1))\to H^{i}(X,\mathcal{F}(l))\to H^{i}(X,\mathcal{F}_{H}(l)), the first and the last term vanishes by the inductive hypothesis. So Hi(X,F(l))=0H^{i}(X,\mathcal{F}(l))=0 and thus F\mathcal{F} is ll-regular.

For 2, consider the commutative diagram

H0(X;F(l))¬H0(X;OX(1))H0(H;FH(l))H0(X;F(l))H0(X;F(l+1))H0(H;FH(l+1))¾¹¿®º

The top morphism is the tensor product of two surjective morphism so it’s surjective. By inductive hypothesis, τ\tau is also surjective, so νμ\nu\circ \mu is surjective and H0(X,F(l+1))=imμ+kerνH^{0}(X,\mathcal{F}(l+1))=\mathrm{im} \mu+\mathrm{ker}\nu. The bottom row is exact, we also have H0(X,F(l+1))=imμ+imαH^{0}(X,\mathcal{F}(l+1))=\mathrm{im}\mu+\mathrm{im} \alpha. Note that α\alpha is given by tensoring the local section defining HH, so imαimμ\mathrm{im}\alpha\subset \mathrm{im}\mu. So H0(X,F(l+1))=imμH^{0}(X,\mathcal{F}(l+1))=\mathrm{im} \mu.

For 3, consider the map H0(X,F(l))H0(X,OX(1))H0(X,F(l+1))H^{0}(X,\mathcal{F}(l))\otimes H^{0}(X,\mathcal{O}_{X}(1))\to H^{0}(X,\mathcal{F}(l+1)) which is surjective for all lml\geq m. For p0p\gg 0, F(p+1)\mathcal{F}(p+1) is generated by global sections, we only need to show F(p)\mathcal{F}(p) is generated by global sections. It suffices to show H0(X,F(p))kOXF(p)H^{0}(X,\mathcal{F}(p))\otimes_{k}\mathcal{O}_{X}\to \mathcal{F}(p) is surjective (consider the stalks!). Now consider the commutative diagram

(H0(X;F(p))¬kOX)¬(H0(X;F(p))¬kOX)H0(X;F(p+1))¬kOX(H0(X;F(p))¬kOX)(1)F(p)(1)®¯p+1¯p¬id

α\alpha is surjective by 2 and βp+1\beta_{p+1} is surjective since F(p+1)\mathcal{F}(p+1) is generated by global sections. So βp\beta_{p} is surjective, and F(p)\mathcal{F}(p) is generated by global sections. ◻

Theorem 3. For any non-negative integer pp and nn, there exists a polynomial Ψp,nZ[x0,,xn]\Psi_{p,n}\in \mathbb{Z}[x_{0},\dots,x_{n}] with the following property: Let kk be any field and F\mathcal{F} any coherent sheaf on X=PknX=\mathbb{P}_{k}^{n}, which is a subsheaf of OXp\mathcal{O}_{X}^{p}. Let the Hilbert polynomial of F\mathcal{F} written in terms of binomial coefficients as χ(F(r))=i=0nai(ni)\chi(\mathcal{F}(r))=\sum\limits_{i=0}^{n}a_{i}\binom{n}{i}, where a0,,anZa_{0},\dots, a_{n}\in \mathbb{Z}. Then F\mathcal{F} is mm-regular, m=Ψp,n(a0,,an)m=\Psi_{p,n}(a_{0},\dots,a_{n}).

Proof

Proof. We may use base change to assume kk is infinite. We proceed by induction on nn. The base case n=0n=0: it’s clear that any polynomial Ψp,0\Psi_{p,0} satisfies the requirement. For n1n\geq 1, let HXH\subset X be a hyperplane which does not contain any of the associated points of OXp/F\mathcal{O}_{X}^{p} /\mathcal{F}. Then the torsion group Tor1(OH,OXp/F)=0\mathrm{Tor}_{1}(\mathcal{O}_{H},\mathcal{O}_{X}^{p} /\mathcal{F})=0. Therefore the exact sequence 0FOXpOXp/F00\to \mathcal{F}\to \mathcal{O}_{X}^{p}\to \mathcal{O}_{X}^{p} /\mathcal{F}\to 0 restrict to HH gives an exact sequence 0FHOHpOHp/F00\to \mathcal{F}_{H}\to \mathcal{O}_{H}^{p}\to \mathcal{O}_{H}^{p} /\mathcal{F}\to 0, i.e. FH\mathcal{F}_{H} is a subsheaf of OHpOPkn1p\mathcal{O}_{H}^{p}\cong \mathcal{O}_{\mathbb{P}_{k}^{n-1}}^{p}.

Consider the exact sequence 0F(1)FFH00\to \mathcal{F}(-1)\to \mathcal{F}\to \mathcal{F}_{H}\to 0, we have

χ(FH(r))=χ(F(r))χ(F(r1))=i=0nai(ri)i=0nai(r1i1)=j=0n1bj(rj)\chi(\mathcal{F}_{H}(r))=\chi(\mathcal{F}(r))-\chi(\mathcal{F}(r-1))=\sum_{i=0}^{n}a_{i}\binom{r}{i}-\sum_{i=0}^{n}a_{i}\binom{r-1}{i-1}=\sum_{j=0}^{n-1}b_{j}\binom{r}{j}

where bj=gj(a0,,an)b_{j}=g_{j}(a_{0},\dots,a_{n}), gjg_{j} are polynomial with integral coefficients independent of kk and F\mathcal{F}. By inductive hypothesis on n1n-1, there exists a polynomial Ψp,n1(x0,,xn1)\Psi_{p,n-1}(x_{0},\dots,x_{n-1}) such that FH\mathcal{F}_{H} is m0m_{0}-regular where m0=Ψp,n1(b0,,bn1)=G(a0,,an)m_{0}=\Psi_{p,n-1}(b_{0},\dots,b_{n-1})=G(a_{0},\dots,a_{n}), where GG is a polynomial with integral coefficients independent of kk and the sheaf F\mathcal{F}. For mm01m\geq m_{0}-1, we get a long exact sequence

0H0(X,F(m1))H0(X,F(m))νmH0(H,FH(m))H1(X,F(m))H1(X,F(m))0\to H^{0}(X,\mathcal{F}(m-1))\to H^{0}(X,\mathcal{F}(m))\xrightarrow{\nu_{m}}H^{0}(H,\mathcal{F}_{H}(m))\to H^{1}(X,\mathcal{F}(m))\to H^{1}(X,\mathcal{F}(m))\to \cdots

which for i2i\geq 2 gives isomorphisms Hi(X,F(1))Hi(X,F(m))H^{i}(X,\mathcal{F}(-1))\cong H^{i}(X,\mathcal{F}(m)). As we have Hi(X,F(m))=0H^{i}(X,\mathcal{F}(m))=0 for m0m\gg 0, these equalities show that Hi(X,F(m))=0H^{i}(X,\mathcal{F}(m))=0 for all i2i\geq 2 and mm02m\geq m_{0}-2. The surjections H1(X,F(m1))H1(X,F(m))H^{1}(X,\mathcal{F}(m-1))\to H^{1}(X,\mathcal{F}(m)) show that the function h1(F(m))=dimkH1(X,F(m))h^{1}(\mathcal{F}(m))=\dim_{k}H^{1}(X,\mathcal{F}(m)) is descending for mm02m\geq m_{0}-2. We show that h1(F(m))h^{1}(\mathcal{F}(m)) is strictly descending for mm0m\geq m_{0} till the value reaches 0, which would implies that H1(X,F(m))=0H^{1}(X,\mathcal{F}(m))=0 for all mm0+h1(F(m0))m\geq m_{0}+h^{1}(\mathcal{F}(m_{0})): Note that h1(F(m1))h1(F(m))h^{1}(\mathcal{F}(m-1))\geq h^{1}(\mathcal{F}(m)) for mm0m\geq m_{0}, and moreover eqality holds for some mm0m\geq m_{0} if and only if the restriction map νm:H0(X,F(m))H0(X,FH(m))\nu_{m}:H^{0}(X,\mathcal{F}(m))\to H^{0}(X,\mathcal{F}_{H}(m)) is surjective. FH\mathcal{F}_{H} is m0m_{0}-regular, H0(H,OH(1))H0(H,FH(r))H0(H,FH(r+1))H^{0}(H,\mathcal{O}_{H}(1))\otimes H^{0}(H,\mathcal{F}_{H}(r))\to H^{0}(H,\mathcal{F}_{H}(r+1)) is surjective. Using the commutative diagram

H0(X;F(l))¬H0(X;OX(1))H0(H;FH(l))H0(X;F(l))H0(X;F(l+1))H0(H;FH(l+1))¾¹¿®ºm

we know that νm:H0(X,F(r))H0(H,FH(r))\nu_{m}:H^{0}(X,\mathcal{F}(r))\to H^{0}(H,\mathcal{F}_{H}(r)) surjective implies νj:H0(X,F(j))H0(H,FH(j))\nu_{j}:H^{0}(X,\mathcal{F}(j))\to H^{0}(H,\mathcal{F}_{H}(j)) surjective for all jrj\geq r, rmr\geq m. So once h1(F(j1))=h1(F(j))h^{1}(\mathcal{F}(j-1))=h^{1}(\mathcal{F}(j)) then h1(F(j1))=h1(F(r))h^{1}(\mathcal{F}(j-1))=h^{1}(\mathcal{F}(r)) for any rjr\geq j. Since h1(F(j))=0h^{1}(\mathcal{F}(j))=0 for j0j\gg 0, h1(F(m))h^{1}(\mathcal{F}(m)) is strictly decreasing for mm0m\geq m_{0} till the value reaches 0.

Now we give a suitable upper bound for h1(F(m0))h^{1}(\mathcal{F}(m_{0})). Since FOXp\mathcal{F}\subset \mathcal{O}_{X}^{p}, we have h0(F(r))ph0(OPkn(r))=p(n+rn)h^{0}(\mathcal{F}(r))\leq p h^{0}(\mathcal{O}_{\mathbb{P}_{k}^{n}}(r))=p\binom{n+r}{n}. h1(F(m))=0h^{1}(\mathcal{F}(m))=0 for i2i\geq 2, mm02m\geq m_{0}-2, so

h1(F(m0))=h0(F(m0))χ(F(m0))p(n+m0n)i=0nai(m0i)=P(a0,,an)h^{1}(\mathcal{F}(m_{0}))=h^{0}(\mathcal{F}(m_{0}))-\chi(\mathcal{F}(m_{0}))\leq p\binom{n+m_{0}}{n}-\sum_{i=0}^{n}a_{i}\binom{m_{0}}{i}=P(a_{0},\dots,a_{n})

where P(a0,,an)P(a_{0},\dots,a_{n}) is a polynomial in a0,,ana_{0},\dots, a_{n}, by substituting m0=G(a0,,an)m_{0}=G(a_{0},\dots,a_{n}). Thus the coefficients of P(x0,,xn)P(x_{0},\dots,x_{n}) is independent of kk and sheaf F\mathcal{F}. Since h1(F(m0))0h^{1}(\mathcal{F}(m_{0}))\geq 0, we must have P(a0,,an)0P(a_{0},\dots,a_{n})\geq 0. Therefore H1(X,F(m))=0H^{1}(X,\mathcal{F}(m))=0 for mG(a0,,an)+P(a0,,an)m\geq G(a_{0},\dots,a_{n})+P(a_{0},\dots,a_{n}). Take Ψp,n(x0,,xn)=G(x0,,xn)+P(x0,,xn)\Psi_{p,n}(x_{0},\dots,x_{n})=G(x_{0},\dots,x_{n})+P(x_{0},\dots,x_{n}) and noting that P(a0,,an)0P(a_{0},\dots,a_{n})\geq 0, we know F\mathcal{F} is Ψp,n(a0,,an)\Psi_{p,n}(a_{0},\dots,a_{n})-regular. ◻

Stratification of Hilbert polynomial

We state a commutative algebra lemma and its corollary first.

Lemma 4. Let AA be a noetherian domain, BB a finite type AA-algebra. Let MM be a finite type BB-module and. Then there exists fAf\in A, f0f\neq 0 such that MfM_{f} if free over AA.

Corollary 2 (generic flatness). Let SS be a noetherian integral scheme. Let p:XSp:X\to S be a finite type morphism and let F\mathcal{F} be a coherent sheaf on XX. Then there exists a nonempty open subscheme USU\subset S such that the restriction of F\mathcal{F} to XU=p1(U)X_{U}=p^{-1}(U) is flat over OU\mathcal{O}_{U}.

Theorem 4 (base change without flatness). Let f:XYf:X\to Y be a projective morphism, u:YYu:Y'\to Y a morphism between noetherian schemes. Let F\mathcal{F} be a coherent sheaf on XX. Then the base change morphism ufF(d)fuF(d)u^{*}f_{*}\mathcal{F}(d)\to f'_{*}u'^{*}\mathcal{F}(d) is an isomorphism for d0d\gg 0.

X0XY0Yu0f0fu

Proof

Proof. The problem is local on YY so we may assume Y=SpecAY=\mathrm{Spec}A. We also reduce to the case Y=SpecAY'=\mathrm{Spec} A' and X=PAnX=\mathbb{P}_{A}^{n} using flat base change. Take a resolution iOX(ai)jOX(bj)F0\bigoplus\limits_{i}\mathcal{O}_{X}(a_{i})\to \bigoplus\limits_{j}\mathcal{O}_{X}(b_{j})\to \mathcal{F}\to 0 and pull back this exact sequence via uu', we get iOX(ai)jOX(bj)uF0\bigoplus\limits_{i}\mathcal{O}_{X'}(a_{i})\to \bigoplus\limits_{j}\mathcal{O}_{X'}(b_{j})\to u^{*}\mathcal{F}\to 0. After twisting by OX(d)\mathcal{O}_{X}(d) (resp. OX(d)\mathcal{O}_{X'}(d)) for d0d\gg 0, those higher cohomology vanish so apply H0H^{0} gives a resolution of H0(X,F(d))H^{0}(X,\mathcal{F}(d)) as AA-module and H0(X,uF(d))H^{0}(X',u'^{*}\mathcal{F}(d)) as AA'-module. Note the sections of OX(a)\mathcal{O}_{X}(a) are just the degree aa polynomials over AA, we have H0(X,OX(a))AAH0(X,OX(a))H^{0}(X,\mathcal{O}_{X}(a))\otimes_{A} A'\cong H^{0}(X',\mathcal{O}_{X'}(a)). Tensoring AA' with the resolution of H0(X,F(d))H^{0}(X,\mathcal{F}(d)) we get a resolution of H0(X,F(d))AAH^{0}(X,\mathcal{F}(d))\otimes_{A} A', which is also a resolution of H0(X,uF(d))H^{0}(X',u'^{*}\mathcal{F}(d)). Since the base change morphism commutes with those for F(d)\mathcal{F}(d), we conclude that the base change morphism of F(d)\mathcal{F}(d) is an isomorphism. ◻

Theorem 5. Let f:XYf:X\to Y be a projective morphism of noetherian schemes and F\mathcal{F} a coherent sheaf on XX. Then ff is flat over YY if and only if fF(d)f_{*}\mathcal{F}(d) is finite rank locally free sheaf for d0d\gg 0.

Proof

Proof. The problem is local on YY so we may assume Y=SpecAY=\mathrm{Spec}A, where AA is a noetherian local ring. Then the theorem becomes: F\mathcal{F} is flat if and only if H0(X,F(d))H^{0}(X,\mathcal{F}(d)) is free AA-module for d0d\gg 0. This is what we proved in Ha3 III theorem 9.9. ◻

Theorem 6. Let f:XSf:X\to S be a projective morphism over noetherian scheme SS. Let F\mathcal{F} be a coherent sheaf on XX. For each polynomial PP there exists a locally closed subscheme SpS_{p} of SS such that a morphism φ:TS\varphi:T\to S factors through SpS_{p} if and only if φF\varphi^{*}\mathcal{F} on XTX_{T} is flat over TT with Hilbert polynomial PP. Moreover, SPS_{P} is nonempty for finitely many PP and the disjoint union of inclusions i:S=PSPSi:S'=\coprod\limits_{P}S_{P}\to S induces a bijection on underlying set.

Proof

Proof. We first do for the special case X=SX=S. For any sSs\in S, the fibre Fs\mathcal{F}_{s} is just the pullback of F\mathcal{F} to Speck(s)\mathrm{Spec}k(s) and the Hilbert polynomial is degree 0 polynomial e=dimk(s)FsQ[t]e=\dim_{k(s)}\mathcal{F}_{s}\in \mathbb{Q}[t]. By the geometric Nakayama lemma, any basis Fs\mathcal{F}_{s} also gives a set of generators of FU\mathcal{F}|_{U} for some UU contains ss. After shrinking to a smaller subset, we may assume there’s a surjective morphism OVeFV0\mathcal{O}_{V}^{e}\to \mathcal{F}_{V}\to 0, and therefore an exact sequence OVmψOVeϕFV0\mathcal{O}_{V}^{m}\xrightarrow{\psi} \mathcal{O}_{V}^{e}\xrightarrow{\phi}\mathcal{F}_{V}\to 0. Let Ie\mathcal{I}_{e} be the ideal sheaf corresponding to the e×me\times m matrix (ψij)(\psi_{ij}) of OVmψOVe\mathcal{O}_{V}^{m}\xrightarrow{\psi} \mathcal{O}_{V}^{e}. Let VeV_{e} be the closed subscheme of VV defined by Ie\mathcal{I}_{e}. For any morphism f:TVf:T\to V, the pullback OTmOTefF0\mathcal{O}_{T}^{m}\to \mathcal{O}_{T}^{e}\to f^{*}\mathcal{F}\to 0 is exact. Hence fFf^{*}\mathcal{F} is free OT\mathcal{O}_{T}-module if and only if fψ=0f^{*}\psi=0, i.e. ff factors through the subscheme VeV_{e} defined by vanishing of all ψij\psi_{ij}. We established the strata for the special case.

Now we do the stratification for the general case. Let YY be an irreducible component of SS. UU be the nonempty open subset of YY which consists of all the points of YY which are not in the other irreducible components of SS. Let UU have the reduced induced subscheme structure. Then it’s clear UU is an integral scheme and a locally closed subscheme of SS. By the generic flatness, UU has a nonempty open subscheme VV such that the restriction of F\mathcal{F} to XVX_{V} is flat over OV\mathcal{O}_{V}. Now repeating the argument with SS replaced by the reduced closed subscheme SVS-V, it follows from the noetherian induction on SS that there exist finitely many reduced locally closed disjoint subscheme ViV_{i} of SS such that on the underlying space S=Vi\left| S \right| =\cup \left| V_{i} \right| and the restriction of F\mathcal{F} to XViX_{V_{i}} is flat over OVi\mathcal{O}_{V_{i}}. As ViV_{i} noetherian, the Hilbert polynomials are locally constant. So there’re only finitely many distinct Hilbert polynomials.

Denote fi:XiVif_{i}:X_{i}\to V_{i} be the pullbacks of XSX\to S on ViV_{i} and Fi=fiF\mathcal{F}_{i}=f_{i}^{*}\mathcal{F}. Then there’re finitely many polynomials {P1(d),,Pm(d)}\{P_{1}(d),\dots, P_{m}(d)\} such that for each sSs\in S, PFs(d)=PmP_{\mathcal{F}_{s}}(d)=P_{m} for some mm. Note that there’s did_{i} such that RqfiFi(d)=0R^{q}f_{i*}\mathcal{F}_{i}(d)=0 for all ddid\geq d_{i} and then by base change, fiFi(d)f_{i*}\mathcal{F}_{i}(d) is locally free of rank PFs(d)P_{\mathcal{F}_{s}}(d) and the base change map
fiFi(d)k(s)H0(Xs,Fs(d))f_{i*}\mathcal{F}_{i}(d)\otimes k(s)\to H^{0}(X_{s},\mathcal{F}_{s}(d)) is isomorphism. See Ha3 III theorem 12.11. Let N=max{d1,,dm}N=\max\{d_{1},\dots, d_{m}\}, we now have:

  1. There are finitely many polynomials P1,,PmP_{1},\dots, P_{m} such that for each sSs\in S, PFs(d)=Pi(d)P_{\mathcal{F}_{s}}(d)=P_{i}(d) for some ii.

  2. Hi(Xs,Fs(d))=0H^{i}(X_{s},\mathcal{F}_{s}(d))=0 for all i>0i>0 and dNd\geq N.

  3. fF(d)k(s)H0(Xs,Fs(d))f_{*}\mathcal{F}(d)\otimes k(s)\cong H^{0}(X_{s},\mathcal{F}_{s}(d)) has dimension Pi(d)P_{i}(d) for all dNd\geq N.

Pick nn such that degPFs(d)n\deg P_{\mathcal{F}_{s}}(d)\leq n for all sSs\in S. We have the following fact:

Let Poln\mathrm{Pol}_{n} be the set of polynomials over Q\mathbb{Q} of degree at most nn. Then for any NN, PolnZn+1\mathrm{Pol}_{n}\to \mathbb{Z}^{n+1} given by P(P(N),,P(N+n))P\mapsto (P(N),\dots, P(N+n)) is a bijection.

Now apply the stratification for the special case of the coherent sheaves {Ei:fF(N+i)}i=0n\{\mathcal{E}_{i}:f_{*}\mathcal{F}(N+i)\}_{i=0}^{n} on SS. Thus for each ii and ee, we have a stratum Wi,eW_{i,e} by the base change properties 2. and 3., we have e=rankEiWi,e=PFs(N+i)e=\mathrm{rank}\mathcal{E}_{i}|_{W_{i,e}}=P_{\mathcal{F}_{s}}(N+i). For any sequence (e0,,en)Zn+1(e_{0},\dots,e_{n})\in \mathbb{Z}^{n+1} which by the fact above, corresponding to a polynomial PP, we know as the schematic intersection WP0=i=0nWi,eW_{P}^{0}=\bigcap\limits_{i=0}^{n}W_{i,e}. By definition, a map φ:TS\varphi:T\to S factors through WP0W_{P}^{0} if and only if φfF(N+i)\varphi^{*}f_{*}\mathcal{F}(N+i) is locally free of rank ei=P(N+i)e_{i}=P(N+i) for i=0,,ni=0,\dots, n. In particular, sWP0s\in W_{P}^{0}, if and only if PFs(d)=P(d)P_{\mathcal{F}_{s}}(d)=P(d) and so by the flatness the Hilbert polynomials {WP0}\{W_{P}^{0}\} is a finite locally closed stratification of SS which has the correct underlying space. We also need to determine the scheme structure. By 2., we know that the formation of fF(N+a)f_{*}\mathcal{F}(N+a) is compatible with arbitary base change for all a0a\geq 0. Now for each d0d\geq 0, apply the stratification to the sheaf fF(N+n+d)WP0f_{*}\mathcal{F}(N+n+d)|_{W_{P}^{0}} to obtain a locally closed subscheme WPdW_{P}^{d}. On WPdW_{P}^{d}, the sheaf fF(N+d+n)WPdf_{*}\mathcal{F}(N+d+n)|_{W_{P}^{d}} is locally free of rank P(N+n+d)P(N+n+d). Note at each closed point of WP0W_{P}^{0}, the rank of fF(N+n+d)f_{*}\mathcal{F}(N+n+d) is exactly P(N+n+d)P(N+n+d), so WPdW_{P}^{d} has the same underlying reduced subscheme. In particular, it’s a closed subscheme of WP0W_{P}^{0} and it is cut out by some ideal sheaf IPd\mathcal{I}_{P}^{d}. Consider the chain IP1IP1+IP2I_{P}^{1}\subset \mathcal{I}_{P}^{1}+\mathcal{I}_{P}^{2}\subset \cdots. By the noetherian property, the chain is stabled and the final ideal sheaf is I\mathcal{I}. Let the closed subscheme corresponding to I\mathcal{I} be SPS_{P} (or equivalently, SPS_{P} is the schematic intersection of all WPdW_{P}^{d}).

SPS_{P} forms a stratification of SS. By the definition φ:TS\varphi:T\to S factors through SPS_{P} if and only if for all a0a\geq 0, φfF(N+a)\varphi^{*}f_{*}\mathcal{F}(N+a) is locally free of rank P(N+a)P(N+a), but by the base change, φfF(N+a)=(fT)FT(N+a)\varphi^{*}f_{*}\mathcal{F}(N+a)=(f_{T})_{*}\mathcal{F}_{T}(N+a). Thus φ:TS\varphi:T\to S factors through SPS_{P} if and only if (fT)FT(N+a)(f_{T})_{*}\mathcal{F}_{T}(N+a) is locally free of rank P(N+a)P(N+a) for all a0a\geq 0 if and only if FT\mathcal{F}_{T} is flat over TT with Hilbert polynomial P(d)P(d). ◻

Moreover, the pullback sheaf FS\mathcal{F}_{S'} is flat over SS and any morphism φ:TS\varphi:T\to S factor through SS' if FT\mathcal{F}_{T} is flat over TT.

Grothendieck Existence Theorem

Theorem 7. Let f:XYf:X\to Y be a projective morphism noetherian schemes. L=OX(1)\mathcal{L}=\mathcal{O}_{X}(1) is very ample sheaf over YY. ΦQ[t]\Phi\in \mathbb{Q}[t] is a polynomial. Let F\mathcal{F} be a coherent sheaf on XX which is a quotient of some sheaf E=OX(m)r\mathcal{E}=\mathcal{O}_{X}(m)^{r} for some rNr\in \mathbb{N}, mZm\in \mathbb{Z}. Then the quotient functor QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} is represented by a scheme QuotF/X/YΦ,LQuot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} which is projective over YY.

Note if YY is affine noetherian scheme, any coherent sheaf is a quotient of some OX(m)r\mathcal{O}_{X}(m)^{r}. See Ha3 II theorem 5.18.

We will do the proof in a lemma and several steps.

Proof

Proof. Step 1. Replace F\mathcal{F} by F(m)\mathcal{F}(-m). Let Ψ\Psi be the polynomial defined by Ψ(t)=Ψ(tm)\Psi(t)=\Psi(t-m). We have a natural isomorphism QuotF/X/YΦ,LQuotF(m)/X/YΨ,L\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}\to \mathcal{Q}uot_{\mathcal{F}(-m)/X /Y}^{\Psi,\mathcal{L}} by mapping the coherent quotient FSG\mathcal{F}_{S}\to \mathcal{G} to FS(m)G(m)\mathcal{F}_{S}(-m)\to \mathcal{G}(-m) for any noetherian scheme SS over YY. So we may replace F\mathcal{F} by F(m)\mathcal{F}(-m) and we may assume E=OXr\mathcal{E}=\mathcal{O}_{X}^{r}.

Step 2. Take a closed immersion e:XPYne:X\to \mathbb{P}_{Y}^{n} such that L=eOPYn(1)\mathcal{L}=e^{*}\mathcal{O}_{\mathbb{P}_{Y}^{n}}(1). Then there’s a natural isomorphism QuotF/X/YΦ,LQuoteF/PYn/YΦ,OPYn(1)\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}\to \mathcal{Q}uot_{e_{*}\mathcal{F}/\mathbb{P}_{Y}^{n} /Y}^{\Phi,\mathcal{O}_{\mathbb{P}_{Y}^{n}}(1)}: for any morphism SYS\to Y from a noetherian scheme and any quotient FSG\mathcal{F}_{S}\to \mathcal{G} in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(S), the morphism eSFSeSGe_{S*}\mathcal{F}_{S}\to e_{S*}\mathcal{G} is a quotient in QuoteFPYn/YΦ,OPYn(1)(S)\mathcal{Q}uot_{e_{*}\mathcal{F} \mathbb{P}_{Y}^{n}/ Y}^{\Phi,\mathcal{O}_{\mathbb{P}_{Y}^{n}(1)}}(S), where eSe_{S} is the pullback of ee along SYS\to Y. It’s clear that eSFSe_{S*}\mathcal{F}_{S} is the pullback of eFe_{*}\mathcal{F} along PSnPYn\mathbb{P}_{S}^{n}\to \mathbb{P}_{Y}^{n}.

XSPnSSXPnYY

Conversely, if eSFSGe_{S*}\mathcal{F}_{S}\to \mathcal{G}' is a quotient in QuoteF/PYn/YΦ,OPYn(1)(S)\mathcal{Q}uot_{e_{*}\mathcal{F} /\mathbb{P}_{Y}^{n}/ Y}^{\Phi,\mathcal{O}_{\mathbb{P}_{Y}^{n}}(1)}(S), then G\mathcal{G}' is a OX\mathcal{O}_{X}-module. Note that XSPSnX_{S}\to \mathbb{P}_{S}^{n} is a closed immersion and SuppGim(eS)\mathrm{Supp} \mathcal{G}'\subset \mathrm{im}(e_{S}), let G=eSG\mathcal{G}=e_{S}^{*}\mathcal{G}', then eSG=Ge_{S*}\mathcal{G}=\mathcal{G}'. SO the quotient eSFSGe_{S*}\mathcal{F}_{S}\to \mathcal{G}' is the direct image of FSG\mathcal{F}_{S}\to \mathcal{G}. The surjection E=OXrF\mathcal{E}=\mathcal{O}_{X}^{r}\to \mathcal{F} gives the surjection eEeFe_{*}\mathcal{E}\to \mathcal{e}_{*}\mathcal{F} and thus induces OPYnreF\mathcal{O}_{\mathbb{P}_{Y}^{n}}^{r}\to e_{*}\mathcal{F}(note that ee is closed immersion thus ee_{*} is exact). Therefore we may assume X=PYnX=\mathbb{P}_{Y}^{n}, L=OX(1)\mathcal{L}=\mathcal{O}_{X}(1) and E=OXr\mathcal{E}=\mathcal{O}_{X}^{r}.

Step 3. The surjective morphism E=OXrF\mathcal{E}=\mathcal{O}_{X}^{r}\to \mathcal{F} induces a natural transformation of functors QuotF/X/YΦ,LQuotE/X/YΦ,L\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}\to \mathcal{Q}uot_{\mathcal{E}/X /Y}^{\Phi,\mathcal{L}}, which is defined by sending a quotient FSG\mathcal{F}_{S}\to \mathcal{G} in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(S) to the induced quotient ESG\mathcal{E}_{S}\to \mathcal{G}. By the lemma below, if QuotE/X/YΦ,L\mathcal{Q}uot_{\mathcal{E}/X /Y}^{\Phi,\mathcal{L}} is represented by QuotE/X/YΦ,LQuot_{\mathcal{E}/X /Y}^{\Phi,\mathcal{L}}, then QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} is represented by a closed subscheme QuotF/X/YΦ,LQuot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}} of QuotE/X/YΦ,LQuot_{\mathcal{E}/X /Y}^{\Phi,\mathcal{L}}. Thus we may take F=E=OXr\mathcal{F}=\mathcal{E}=\mathcal{O}_{X}^{r}.

Step 4. We show that there’s l0l\gg 0 such that for any morphism g:SYg:S\to Y and any quotient FSG\mathcal{F}_{S}\to \mathcal{G} in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F}/X /Y}^{\Phi,\mathcal{L}}(S) with kernel K\mathcal{K}, the induced exact sequence

0fSK(l)fSFS(l)fSG(l)00\to f_{S*}\mathcal{K}(l)\to f_{S*}\mathcal{F}_{S}(l)\to f_{S*}\mathcal{G}(l)\to 0

is exact sequence of locally free sheaves.

For any point sSs\in S, the sequence 0KsFsGs00\to \mathcal{K}_{s}\to \mathcal{F}_{s}\to \mathcal{G}_{s}\to 0 is exact on the fibre Xs=Pk(s)nX_{s}=\mathbb{P}_{k(s)}^{n} since Gs\mathcal{G}_{s} is flat over OXs\mathcal{O}_{X_{s}}. Ks\mathcal{K}_{s} is a subsheaf of Fs=OXsr\mathcal{F}_{s}=\mathcal{O}_{X_{s}}^{r}. Since the Hilbert polynomial of Ks\mathcal{K}_{s} is independent of ss, by regularity theorem, there’s l0l\gg 0 independent on ss such that Ks\mathcal{K}_{s} is ll-regular. So we have Hp(Xs,K(l)s)=0H^{p}(X_{s},\mathcal{K}(l)_{s})=0 for p>0p>0. The vanishing of Hp(Xs,FS(l)s)H^{p}(X_{s},\mathcal{F}_{S}(l)_{s}) for p>0p>0 implies that Hp(Xs,G(l)s)=0H^{p}(X_{s},\mathcal{G}(l)_{s})=0 and K(l)s\mathcal{K}(l)_{s}, FS(l)s\mathcal{F}_{S}(l)_{s} and G(l)s\mathcal{G}(l)_{s} are generated by global sections. By Ha3 III theorem 12.11 and inverse induction, RpfSK(l)=0R^{p}f_{S*}\mathcal{K}(l)=0, RpfSFS(l)=0R^{p}f_{S*}\mathcal{F}_{S}(l)=0 and RpfSG(l)=0R^{p}f_{S*}\mathcal{G}(l)=0 if p>0p>0. So the sequence 0fSK(l)fSFS(l)fSG(l)00\to f_{S*}\mathcal{K}(l)\to f_{S*}\mathcal{F}_{S}(l)\to f_{S*}\mathcal{G}(l)\to 0 is exact sequence of locally free sheaves. Then in the diagram

0f¤SfS¤K(l)f¤SfS¤FS(l)f¤SfS¤G(l)00K(l)FS(l)G(l)0®¯°

the maps α\alpha, β\beta, γ\gamma are surjective: The problem is local so we may assume YY is affine. For any sSs\in S, by Ha3 III theorem 12.11, fSK(l)k(s)=H0(Xs,K(l)k(s))H0(Xs,K(l)s)f_{S*}\mathcal{K}(l)\otimes k(s)=H^{0}(X_{s},\mathcal{K}(l)\otimes k(s))\to H^{0}(X_{s},\mathcal{K}(l)_{s}) is an isomorphism. Now the pullback of sheaf fSK(l)k(s)f_{S*}\mathcal{K}(l)\otimes k(s) on XsX_{s} is fSK(l)k(s)OXsH0(Xs,K(l)s)OXsf_{S*}\mathcal{K}(l)\otimes k(s)\otimes \mathcal{O}_{X_{s}}\cong H^{0}(X_{s},\mathcal{K}(l)_{s})\otimes\mathcal{O}_{X_{s}}. Since K(l)s\mathcal{K}(l)_{s} is generated by global sections, there’s a surjection fSK(l)k(s)OXsK(l)sf_{S*}\mathcal{K}(l)\otimes k(s)\otimes\mathcal{O}_{X_{s}}\to \mathcal{K}(l)_{s}. So α\alpha is surjection on each XsX_{s}. Similar for γ\gamma and β\beta.

Step 5. In Step 4, we constructed fSFS(l)fSGf_{S*}\mathcal{F}_{S}(l)\to f_{S*}\mathcal{G} which is actually an element of QuotfF(l)/X/YΦ(l),OY(S)\mathcal{Q}uot_{f_{*}\mathcal{F}(l) /X/Y}^{\Phi(l),\mathcal{O}_{Y}}(S) where Φ(l)\Phi(l) is the constant polynomial(We are using the isomorphism fSFS(l)gfF(l)f_{S*}\mathcal{F}_{S}(l)\cong g^{*}f_{*}\mathcal{F}(l) which follows from the fact that X=PYnX=\mathbb{P}_{Y}^{n}, F=OXr\mathcal{F}=\mathcal{O}_{X}^{r} and the natural map gfF(l)k(s)fSFS(l)k(s)g^{*}f_{*}\mathcal{F}(l)\otimes k(s)\to f_{S*}\mathcal{F}_{S}(l)\otimes k(s) is isomorphism for each sSs\in S). We get a natural transformation QuotF/X/YΦ,LQuotfF(l)/X/YΦ(l),OY\mathcal{Q}uot_{\mathcal{F} /X/Y}^{\Phi,\mathcal{L}}\to \mathcal{Q}uot_{f_{*}\mathcal{F}(l) /X/Y}^{\Phi(l),\mathcal{O}_{Y}}, which is injective in the sense that for any morphism g:SYg:S\to Y between noetherian schemes, the map QuotF/X/YΦ,L(S)QuotfF(l)/X/YΦ(l),OY(S)\mathcal{Q}uot_{\mathcal{F} / X /Y}^{\Phi,\mathcal{L}}(S)\to \mathcal{Q}uot_{f_{*}\mathcal{F}(l) /X/Y}^{\Phi(l),\mathcal{O}_{Y}}(S) is injective: If FSG\mathcal{F}_{S}\to \mathcal{G} and FSG\mathcal{F}_{S}\to \mathcal{G}' induces the same quotient fSFS(l)fSG(l)f_{S*}\mathcal{F}_{S}(l)\to f_{S*}\mathcal{G}(l) and fSFS(l)fSG(l)f_{S*}\mathcal{F}_{S}(l)\to f_{S*}\mathcal{G}'(l). Then fSK(l)=fSK(l)f_{S*}\mathcal{K}(l)=f_{S*}\mathcal{K}'(l) where K\mathcal{K} and K\mathcal{K}' are the corresponding kernels. Thus fSfSK(l)=fSfSK(l)f_{S}^{*}f_{S*}\mathcal{K}(l)=f_{S}^{*}f_{S*}\mathcal{K}'(l). Note that the diagram in Step 4 shows both K(l)\mathcal{K}(l) and K(l)\mathcal{K}'(l) are the image of fSfSK(l)f_{S}^{*}f_{S*}\mathcal{K}(l) under fSfSF(l)F(l)f_{S}^{*}f_{S*}\mathcal{F}(l)\to \mathcal{F}(l). So K(l)=K(l)\mathcal{K}(l)=\mathcal{K}'(l) and K=K\mathcal{K}=\mathcal{K}'. So FSG\mathcal{F}_{S}\to \mathcal{G} and FSG\mathcal{F}_{S}\to \mathcal{G}' are the same.

Step 6. From the corollary above QuotfF(l)/X/YΦ(l),OY\mathcal{Q}uot_{f_{*}\mathcal{F}(l) /X/Y}^{\Phi(l),\mathcal{O}_{Y}} is represented by Grassmannian G=Grass(fF(l),Φ(l))G=Grass(f_{*}\mathcal{F}(l),\Phi(l)) which is a closed subscheme of PΦ(l)fF(l)\mathbb{P}^{\wedge^{\Phi(l)}f_{*}\mathcal{F}(l)} and hence projective over YY. Let M=fF(l)\mathcal{M}=f_{*}\mathcal{F}(l), let G\mathfrak{G} be the universal family on GG which comes with a surjection πMG\pi^{*}\mathcal{M}\to \mathfrak{G} whose kernel is denoted by L\mathcal{L}, where π\pi it the structure morphism GYG\to Y. Pullback all the sheaves along fGf_{G}, we have 0fGLfGπMfGG00\to f_{G}^{*}\mathcal{L}\to f_{G}^{*}\pi^{*}\mathcal{M}\to f_{G}^{*}\mathfrak{G}\to 0 exact. Since πM=fGFG(l)\pi^{*}\mathcal{M}=f_{G*}\mathcal{F}_{G}(l), we have fGπM=fGfGFG(l)f_{G}^{*}\pi^{*}\mathcal{M}=f_{G}^{*}f_{G*}\mathcal{F}_{G}(l). Then the natural morphism fGfGFG(l)FG(l)f_{G}^{*}f_{G*}\mathcal{F}_{G}(l)\to \mathcal{F}_{G}(l) induces a morphism fGLG(l)f_{G}^{*}\mathcal{L}\to \mathcal{G}(l), denote the cokernel by R\mathcal{R}. Then we have an exact sequence fGLFG(l)R0f_{G}^{*}\mathcal{L}\to \mathcal{F}_{G}(l)\to \mathcal{R}\to 0. Now let g:SYg:S\to Y be our morphism, FSG\mathcal{F}_{S}\to \mathcal{G} be a quotient in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F} /X /Y}^{\Phi,\mathcal{L}}(S) and fSFS(l)fSG(l)f_{S*}\mathcal{F}_{S}(l)\to f_{S*}\mathcal{G}(l) the corresponding quotient in QuotfF(l)/X/YΦ(l),OY(S)\mathcal{Q}uot_{f_{*}\mathcal{F}(l) /X/Y}^{\Phi(l),\mathcal{O}_{Y}}(S). Then there’s a unique morphism h:SGh:S\to G such that 0fSK(l)fSF(l)fSG(l)00\to f_{S*}\mathcal{K}(l)\to f_{S*}\mathcal{F}(l)\to f_{S*}\mathcal{G}(l)\to 0 is the pullback of 0LπMG00\to \mathcal{L}\to \pi^{*}\mathcal{M}\to \mathfrak{G}\to 0 along hh. Using the facts that gM=fSFS(l)g^{*}\mathcal{M}=f_{S*}\mathcal{F}_{S}(l) and G\mathfrak{G} is locally free. We know the sequence 0fGLfGπMfGG00\to f_{G}^{*}\mathcal{L}\to f_{G}^{*}\pi^{*}\mathcal{M}\to f_{G}^{*}\mathfrak{G}\to 0 pulls back via the induced morphism XSXGX_{S}\to X_{G} to the exact sequence 0fSfSK(l)fSfSFS(l)fSfSG(l)00\to f_{S}^{*}f_{S*}\mathcal{K}(l)\to f_{S}^{*}f_{S*}\mathcal{F}_{S}(l)\to f_{S}^{*}f_{S*}\mathcal{G}(l)\to 0. Therefore the morphism cc pulls back fGGFGRf_{G}^{*}\mathcal{G}\to \mathcal{F}_{G}\to \mathcal{R} to fSfSK(l)FS(l)G(l)0f_{S}^{*}f_{S*}\mathcal{K}(l)\to \mathcal{F}_{S}(l)\to \mathcal{G}(l)\to 0. In particular, R(l)\mathcal{R}(-l) is the pullback of G\mathcal{G} which is flat over SS.

Using the stratification of GG for the sheaf R(l)\mathcal{R}(-l), we know that the morphism h:SGh:S\to G factors through the locally closed subscheme GG'. On the other hand, any morphism SGS\to G over YY which factors through GG' is will give a quotient of FS\mathcal{F}_{S} in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F} /X /Y}^{\Phi,\mathcal{L}}(S) which is the pullback of the quotient FSR(l)\mathcal{F}_{S}\to \mathcal{R}(-l). Thus the scheme GG' with the universal family FGR(l)\mathcal{F}_{G}\to \mathcal{R}(-l) restricted to XGX_{G'} represents the functor QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F} /X /Y}^{\Phi,\mathcal{L}}.

Step 7. We need to show GG' is closed subset of GG. GG is projective so we only need to show GG' is proper. We check this by valuation criterion. For DVR RR and it’s field of fraction KK, let T=SpecKT=\mathrm{Spec}K and S=SpecRS=\mathrm{Spec}R. Consider the commutative diagram

TG0GSYj

which induces the commutative diagram

XTXG0XGXSXj0

If we pullback FGR(l)\mathcal{F}_{G}\to \mathcal{R}(-l), we will get FTG\mathcal{F}_{T}\to \mathcal{G} in QuotF/X/YΦ,L(T)\mathcal{Q}uot_{\mathcal{F} /X /Y}^{\Phi,\mathcal{L}}(T), from which we also get a morphism jFTjGj'_{*}\mathcal{F}_{T}\to j'_{*}\mathcal{G}. On the other hand, since FT=jFS\mathcal{F}_{T}=j'^{*}\mathcal{F}_{S}, there’s a natural morphism FSjFT\mathcal{F}_{S}\to j'_{*}\mathcal{F}_{T} and thus a morphism φ:FSjG\varphi:\mathcal{F}_{S}\to j'_{*}\mathcal{G}, a quotient FSH\mathcal{F}_{S}\to \mathcal{H}, where H\mathcal{H} is the image of φ\varphi. Since G\mathcal{G} is flat over TT, jj'_{*} is flat over SS. Moreover, since RR is DVR, any subsheaf of jGj'_{*}\mathcal{G} is flat over SpecR\mathrm{Spec}R hence H\mathcal{H} is flat over SS(RR is PID so flat     \iff torsion free). Thus the Hilbert polynomial of H\mathcal{H} on the fibres of XSSX_{S}\to S is the same over the points of SS. Therefore the quotient FSH\mathcal{F}_{S}\to\mathcal{H} is an element in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F} /X /Y}^{\Phi,\mathcal{L}}(S). By our construction, the pullback of FSH\mathcal{F}_{S}\to \mathcal{H} to XTX_{T} coincide with FTG\mathcal{F}_{T}\to \mathcal{G}. Moreover, the arguments in Step 6 show that FGR(l)\mathcal{F}_{G}\to \mathcal{R}(-l) pulls back to FSH\mathcal{F}_{S}\to \mathcal{H}. Therefore there’s a unique morphism SGS\to G' over YY which restricts to the given morphism TGT\to G'. Properness is done by valuation criterion. ◻

Lemma 5. Let f:XYf:X\to Y be projective morphism of noetherian schemes, OX(1)\mathcal{O}_{X}(1) a very ample sheaf on YY, and ΦQ[t]\Phi\in \mathbb{Q}[t] a polynomial. Let FF\mathcal{F}'\to \mathcal{F} be a surjective morphism of coherent sheaves on XX. If QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F}' /X/Y}^{\Phi,\mathcal{L}} is represented by a scheme QuotF/X/YΦ,LQuot_{\mathcal{F}' /X/Y}^{\Phi,\mathcal{L}}, then QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F} /X/Y}^{\Phi,\mathcal{L}} is represented by a closed subscheme of QuotF/X/YΦ,LQuot_{\mathcal{F}' /X/Y}^{\Phi,\mathcal{L}}.

Proof

Proof. Let Q=QuotF/X/YΦ,LQ'=Quot_{\mathcal{F}' /X/Y}^{\Phi,\mathcal{L}}, and G\mathfrak{G}' be the universal family on XQX_{Q'} which comes with a surjective morphism FQG\mathcal{F}'_{Q'}\to \mathfrak{G}' whose kernel is denoted by L\mathcal{L}. The given morphism FF\mathcal{F}'\to \mathcal{F} also gives a surjective morphism FQFQ\mathcal{F}'_{Q'}\to \mathcal{F}_{Q'} whose kernel is denoted by N\mathcal{N}. Put R=FQ/(L+N)\mathcal{R}=\mathcal{F}'_{Q'} /(\mathcal{L}+\mathcal{N}), we have a commutative diagram

00L+NL0NF0Q0FQ0GR0000

Let Q=QΦQ=Q'_{\Phi} be the locally closed subscheme of QQ' corresponding to Φ\Phi given by the stratification of QQ' for the sheaf R\mathcal{R}. Now let g:SYg:S\to Y be the morphism from a noetherian scheme, FSG\mathcal{F}_{S}\to \mathcal{G} be an element in QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F} /X/Y}^{\Phi,\mathcal{L}}. The surjection FSFS\mathcal{F}'_{S}\to \mathcal{F}_{S} composed with FSG\mathcal{F}_{S}\to \mathcal{G} gives a quotient FSG\mathcal{F}_{S}'\to \mathcal{G} in QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F} /X/Y}^{\Phi,\mathcal{L}}(S). Thus we have a natural transformation QuotF/X/YΦ,L(S)QuotF/X/YΦ,L(S)\mathcal{Q}uot_{\mathcal{F} /X/Y}^{\Phi,\mathcal{L}}(S)\to \mathcal{Q}uot_{\mathcal{F}' /X/Y}^{\Phi,\mathcal{L}}(S). Moreover, the quotient FSG\mathcal{F}_{S}'\to \mathcal{G} uniquely determines a morphism h:SQh:S\to Q' such that c:XSXQc:X_{S}\to X_{Q'} is the induced morphism then the quotient FQG\mathcal{F}_{Q}'\to \mathfrak{G} is pulled back to FSG\mathcal{F}_{S}'\to \mathcal{G} via cc. So we have the commutative diagram

00c¤(L+N)c¤L0c¤NF0SFS0Gc¤R0000¯®°

By the construction, the morphism α\alpha factors through the morphism β\beta hence the image of cLc^{*}\mathcal{L} contains the image of cNc^{*}\mathcal{N}, which implies that the image of cLc^{*}\mathcal{L} is equal to the image of c(L+N)c^{*}(\mathcal{L}+\mathcal{N}). Thus γ\gamma is an isomorphism. This also implies that h:SQh:S\to Q' factors through QQ. Therefore the functor QuotF/X/YΦ,L\mathcal{Q}uot_{\mathcal{F} /X/Y}^{\Phi,\mathcal{L}} is represented by the scheme QQ and the quotient FQR\mathcal{F}_{Q}\to \mathcal{R} restricted to XQX_{Q}. QQ is a closed subscheme of QQ' by valuation criterion for properness similar to the proof of the main theorem. ◻

Reference

[1]: The Stacks Project Authors. Stacks project, 2024.

[2]: Ulrich Görtz and Torsten Wedhorn. Algebraic Geometry I: Schemes. Springer, 2010.

[3]: Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.

评论